Da bi naš sajt radio bez problema, koristimo neophodne kolačiće. Voleli bismo vašu dozvolu da koristimo opcione analitičke kolačiće kako bismo ga unapredili. Ne koristimo oglasne kolačiće. Možete prihvatiti sve kolačiće ili ostati samo na neophodnim.
Saznajte više.
Podešavanja kolačića
Upravljajte svojim podešavanjima kolačića:
Ovi kolačići su neophodni za ispravan rad sajta.
Pomažu nam da poboljšamo sajt kroz razumevanje načina korišćenja.
Ne koristimo oglase i ne šaljemo informacije za praćenje oglasa trećim stranama.
A set of m vectors {v1,v2, ...,vm} in Rd (the set of d-tuples of real numbers) is said to be linearly independent if the only reals λ1,λ2,...,λm that satisfy λ1 v1 + λ2 v2 + ... + λm vm = 0 are λ1 = λ2 = ... = λm = 0. For example, in R2 the set of vectors {(1 0), (0 1)} is linearly independent. However, {(1 0), (0 1), (1 1)} is not since 1 ∙ (1 0) + 1 ∙ (0 1) + (-1) ∙ (1 1) = (0 0).
In this task, you are given n vectors in Rd, and every vector has some weight. Your job is to find a linearly independent set of vectors with maximal sum of weights.
The first line contains two integers d and n. The next n lines contain d+1 integers each, separated with one empty space between any two integers. The first d numbers in the line i+1 are coordinates of the ith vector, and the last number is its weight.
The output should consist a single integer: the sum of weights of vectors in your set.
1 ≤ d ≤ 200
1 ≤ n ≤ 500
The coordinates of the vectors are integers in the range [-103,103].
The weights of the vectors are integers in the range [-106,106].
Ulazizlaz
4 4 1 0 0 0 30 0 0 1 0 30 1 0 1 0 100 0 0 0 1 1
131
Morate biti ulogovani kako biste poslali zadatak na evaluaciju.
Molimo vas da popunite sva polja obeležena kao obavezna.Desila se greška prilikom slanja vašeg odgovora.Vaš odgovor je zabeležen. Hvala!Vaši odgovori su zabeleženi. Hvala!